Crossover in the magnetic response of single-crystalline Ba1â‹TMxKxFe2As2 and Lifshitz critical point evidenced by Hall effect measurements
نویسندگان
چکیده
We report on the doping evolution of magnetic susceptibility χ(T) and Hall coefficient RH in high-quality Ba1−xKxFe2As2 (0.13≤x≤1) single crystals. It is found that the normal-state magnetic susceptibility of Ba1−xKxFe2As2 compounds undergoes a crossover from linear-T dependence in the undoped and underdoped samples into KFe2As2-type magnetic response in the overdoped samples with increasing K content. Although magnetic susceptibility χ(T) of optimally doped samples (0.34≤x≤0.47) still follows a monotonic increase with increasing temperature, a big hump around 300 K emerges. As x exceeds 0.53, a broad peak forms in overdoped samples (0.53≤x≤1), which shifts toward 120 K for the end member KFe2As2. Above the peak temperature T∗=120 K, a Curie-Weiss-like behavior is observed in KFe2As2. The Hall coefficient RH of underdoped sample x=0.22shows a rapid increase above spin-density-wave transition temperature TSDW. Below TSDW, it increases slowly. RH of optimally doped and slightly overdoped samples (0.34≤x≤0.65) shows relatively weak temperature dependence and a saturation tendency below 150 K. However, RH of K heavily overdoped samples (0.80≤x≤1) increases rapidly below 150 K. Meanwhile, the Hall angle cotθH displays a concave temperature dependence within the doping range 0.22≤x≤0.55, whereas it changes to a convex temperature dependence within the doping range 0.65≤x≤1. The dramatic change coincides with the Lifshitz transition occurring around the critical doping x=0.80, where angle photoemission spectroscopy measurements had confirmed that the electron pocket disappears with excess hole doping in the Ba1−xKxFe2As2 system. It is suggested that the characteristic temperature T∗ at around 120∼150 K observed in susceptibility and the Hall coefficient, as well as previously reported resistivity data, may indicate an incoherence-coherence crossover in the Ba1−xKxFe2As2 system.
منابع مشابه
خواص ترابردی مغناطیسی واثر هال در نمونه هایGdpr-123
Single phase polycrystalline Gd1-xPrxBa2Cu3O7-δ samples with x=0.05 , 0.10, and 0.15 have been prepared by standard solid state reaction technique and characterized by XRD and SEM analysis. The electrical resistivity, Hall effect and magnetoresistance measurements have been on the samples. The electrical resistivity measurements indicate a reduction of transition temperature (Tc) and an incre...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملGiant Hall effect in superparamagnetic granular films
A comprehensive review of the giant Hall effect (GHE) is presented, with emphasis on novel experimental data obtained in Ni–SiO2 and Co–SiO2 films prepared by co-sputtering. GHE is observed close to and on both sides of the metal–insulator transition. From the point of view of microscopic conduction mechanisms, this means a crossover from metallic conductivity with weak localization to tunnelin...
متن کاملLifshitz Transition and Chemical Instabilities in Ba1â‹TMxKxFe2As2 Superconductors
For solid-solution Ba1−xKxFe2As2 Fermi surface evolution is mapped via Bloch spectral functions calculated using density functional theory implemented in Korringa-Kohn-Rostoker multiple scattering theory with the coherent-potential approximation. Spectral functions reveal electronic dispersion, topology, orbital character, and broadening (electron-lifetime effects) due to chemical disorder. Dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016